Difficulty of distinguishing product states locally
نویسندگان
چکیده
منابع مشابه
Difficulty of distinguishing product states locally
Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies ...
متن کاملDistinguishing locally of quantum states and the distillation of entanglement
This paper try to probe the relation of distinguishing locally and distillation of entanglement. The distinguishing information (DI) and the maximal distinguishing information (MDI) of a set of pure states are defined. The interpretation of distillation of entanglement in term of information is given. The relation between the maximal distinguishing information and distillable entanglement is ga...
متن کاملComputational difficulty of finding matrix product ground states.
We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians, which are known to be matrix product states (MPS). To this end, we construct a class of 1D frustration-free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. Without the uniqueness of the ground state, ...
متن کاملDistinguishing separable and entangled states.
We show how to design families of operational criteria that distinguish entangled from separable quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria are tractable due to powerful computational and theoretical methods for the class of convex opt...
متن کاملDistinguishing Difficulty Levels with Non-invasive Brain Activity Measurements
Passive brain-computer interfaces are designed to use brain activity as an additional input, allowing the adaptation of the interface in real time according to the user’s mental state. The goal of the present study is to distinguish between different levels of game difficulty using real-time, non-invasive brain activity measurement with functional near-infrared spectroscopy (fNIRS). The study i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2017
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.95.012337